If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+5.8x-0.928=0
a = 100; b = 5.8; c = -0.928;
Δ = b2-4ac
Δ = 5.82-4·100·(-0.928)
Δ = 404.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.8)-\sqrt{404.84}}{2*100}=\frac{-5.8-\sqrt{404.84}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.8)+\sqrt{404.84}}{2*100}=\frac{-5.8+\sqrt{404.84}}{200} $
| 4(-1x+6)=-3 | | 23+x=+x | | G-10+7g=15+g | | 2m-3=m+8 | | 4(r+8)=80 | | 40x=-1,200 | | 5(x-1)-x=x-5 | | 4=–2(–4–2d) | | 1/2x-9=-25= | | 8|y-3|=2 | | 11=-4x+7x+9 | | 5(4m+1)-2m=13 | | 4x+2(x–5)=3 | | P=2(m+6)+2(2m) | | 4x+3=8x-14 | | 2(3x+-1)=-26 | | 5n=-n+12 | | 38=-1/3(9x+30) | | 10x^2-10=-42 | | 128+7x-3=31x+5 | | -21=3(y-5)-6y | | 0.8+0.3(2-3x)=1.4 | | 4=t+8/6 | | -3z+1=7= | | (x−15)^2=9. | | 3(3x-1)+9=4x+6 | | f-5/9=2/9 | | 2d+24+7d=84 | | 23+7v=100 | | X²-4x+4x+3=0 | | 2z-1=-5= | | -4/5x+3=15 |